Altered mRNA Editing and Expression of Ionotropic Glutamate Receptors after Kainic Acid Exposure in Cyclooxygenase-2 Deficient Mice

نویسندگان

  • Luca Caracciolo
  • Alessandro Barbon
  • Sara Palumbo
  • Cristina Mora
  • Christopher D. Toscano
  • Francesca Bosetti
  • Sergio Barlati
چکیده

Kainic acid (KA) binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/-)) mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/-) mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/-) mice compared to wild type (WT) mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/-) mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/-) compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/-) mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/-) mice. After KA exposure, COX-2(-/-) mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6), inducible nitric oxide synthase (iNOS), microglia (CD11b) and astrocyte (GFAP). Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/-) mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the glutamatergic system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Kainic Acid-Induced Seizure on Gene Expression of Brain Neurotransmitter Receptors in Mice Using RT2 PCR Array

Introduction: Kainic acid (KA) induces neuropathological changes in specific regions of the mouse hippocampus comparable to changes seen in patients with chronic temporal lobe epilepsy (TLE). According to different studies, the expression of a number of genes are altered in the adult rat hippocampus after status epilepticus (SE) induced by KA. This study aimed to quantitatively evaluate changes...

متن کامل

Ionotropic glutamate receptor modulation preferentially affects NMDA receptor expression in rat hippocampus.

Electrophysiological data suggest that alterations in the function of one glutamate receptor subtype may affect the function of other subtypes. Further, previous studies have demonstrated that NMDA receptor antagonists affect NMDA and kainate receptor expression in rat hippocampus. In order to address the mutual regulation of NMDA, AMPA, and kainate receptor expression in rat hippocampus, we co...

متن کامل

The Role of RNA Editing of Kainate Receptors in Synaptic Plasticity and Seizures

The ionotropic glutamate receptor subunit GluR6 undergoes developmentally and regionally regulated Q/R site RNA editing that reduces the calcium permeability of GluR6-containing kainate receptors. To investigate the functional significance of this editing in vivo, we engineered mice deficient in GluR6 Q/R site editing. In these mutant mice but not in wild types, NMDA receptor-independent long-t...

متن کامل

P24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP

Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...

متن کامل

Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene.

Loss of neurotransmitter receptors, especially glutamate and dopamine receptors, is one of the pathologic hallmarks of brains of patients with Huntington disease (HD). Transgenic mice that express exon 1 of an abnormal human HD gene (line R6/2) develop neurologic symptoms at 9-11 weeks of age through an unknown mechanism. Analysis of glutamate receptors (GluRs) in symptomatic 12-week-old R6/2 m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011